Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45819
Mol Pharm 2012 Sep 04;99:2761-9. doi: 10.1021/mp300345e.
Show Gene links Show Anatomy links

Intestinal drug transport via the proton-coupled amino acid transporter PAT1 (SLC36A1) is inhibited by Gly-X(aa) dipeptides.

Frølund S , Langthaler L , Kall MA , Holm R , Nielsen CU .


???displayArticle.abstract???
The oral absorption of some drug substances is mediated by nutrient transporters. As a consequence, nutrients and drugs may compete for available transporters, and interactions at the level of intestinal absorption are possible. Recently, we have identified δ-aminolevulinic acid, Gly-Gly, and Gly-Sar as substrates of the amino acid transporter PAT1. The aim of the present study is to investigate if other Gly-containing dipeptides interact with PAT1, and whether they can inhibit PAT1 mediated drug absorption, in vitro and in vivo. The in vitro methods included two-electrode voltage clamp measurements on hPAT1 expressing Xenopus laevis oocytes, which were used to investigate the PAT1-mediated transport of 17 different Gly-containing dipeptides (Gly-X(aa) or X(aa)-Gly). Also, the transepithelial transport of the PAT1 substrate gaboxadol was investigated across Caco-2 cell monolayers in the presence of different dipeptides. The in vivo part consisted of a pharmacokinetic study in rats following oral administration of gaboxadol and preadministration of 200 mg/kg dipeptide. The results showed that in hPAT1 expressing oocytes Gly-Tyr, Gly-Pro, and Gly-Phe inhibited currents induced by drug substances. In Caco-2 cell monolayers, Gly-Gly, Gly-Sar, and Gly-Pro significantly inhibited the PAT1 mediated absorptive transepithelial transport of gaboxadol; however, when orally administered to rats, Gly-Gly, Gly-Sar, Gly-Pro, or Gly-Tyr did not alter the pharmacokinetic profile of gaboxadol. In conclusion, the present study identifies selected dipeptides as inhibitors of PAT1 mediated drug absorption in various in vitro models.

???displayArticle.pubmedLink??? 22853447
???displayArticle.link??? Mol Pharm


Species referenced: Xenopus laevis
Genes referenced: slc36a1